Improving open source software process quality based on defect data mining

Wikan Danar Sunindyo, Thomas Moser, Dietmar Winkler, Deepak Dhungana

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

Open Source Software (OSS) project managers often need to observe project key indicators, e.g., how much efforts are needed to finish certain tasks, to assess and improve project and product quality, e.g., by analyzing defect data from OSS project developer activities. Previous work was based on analyzing defect data of OSS projects by using correlation analysis approach for defect prediction on a combination of product and process metrics. However, this correlation analysis is focusing on the relationship between two variables without exploring the characterization of that relationship. We propose an observation framework that explores the relationship of OSS defect metrics by using data mining approach (heuristics mining algorithm). Major results show that our framework can support OSS project managers in observing project key indicators, e.g., by checking conformance between the designed and actual process models.

OriginalspracheEnglisch
TitelSWQD
UntertitelProcess Automation in Software Development - 4th International Conference, SWQD 2012, Proceedings
Herausgeber (Verlag)Springer
Seiten84 – 102
Seitenumfang19
Band94 LNBIP
ISBN (Print)9783642272127
DOIs
PublikationsstatusVeröffentlicht - 19 Jän. 2012
Extern publiziertJa

Publikationsreihe

NameLecture Notes in Business Information Processing
Band94 LNBIP
ISSN (Print)1865-1348

Fingerprint

Untersuchen Sie die Forschungsthemen von „Improving open source software process quality based on defect data mining“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren