Kriging-Based Self-Adaptive Cloud Controllers

Alessio Gambi, Mauro Pezzè, Giovanni Toffetti

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

Cloud technology is rapidly substituting classic computing solutions, and challenges the community with new problems. In this paper we focus on controllers for cloud application elasticity, and propose a novel solution for self-adaptive cloud controllers based on Kriging models. Cloud controllers are application specific schedulers that allocate resources to applications running in the cloud, aiming to meet the quality of service requirements while optimizing the execution costs. General-purpose cloud resource schedulers provide sub-optimal solutions to the problem with respect to application-specific solutions that we call cloud controllers. In this paper we discuss a general way to design self-adaptive cloud controllers based on Kriging models. We present Kriging models, and show how they can be used for building efficient controllers thanks to their unique characteristics. We report experimental data that confirm the suitability of Kriging models to support efficient cloud control and open the way to the development of a new generation of cloud controllers.

OriginalspracheEnglisch
Aufsatznummer7004890
Seiten (von - bis)368-381
Seitenumfang14
FachzeitschriftIEEE Trans. Serv. Comput.
Jahrgang9
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 Mai 2016
Extern publiziertJa

IMC Forschungsschwerpunkte

  • Software engineering and intelligent systems

ÖFOS 2012 - Österreichischen Systematik der Wissenschaftszweige

  • 102025 Verteilte Systeme

Fingerprint

Untersuchen Sie die Forschungsthemen von „Kriging-Based Self-Adaptive Cloud Controllers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren