Topology and structure of an engineered human cohesin complex bound to Pds5B

Michael T. Hons, Pim J. Huis Int Veld, Jan Kaesler, Pascaline Rombaut, Alexander Schleiffer, Franz Herzog, Holger Stark, Jan Michael Peters

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

Abstract

The cohesin subunits Smc1, Smc3 and Scc1 form large tripartite rings which mediate sister chromatid cohesion and chromatin structure. These are thought to entrap DNA with the help of the associated proteins SA1/2 and Pds5A/B. Structural information is available for parts of cohesin, but analyses of entire cohesin complexes are limited by their flexibility. Here we generated a more rigidbonsai' cohesin by truncating the coiled coils of Smc1 and Smc3 and used single-particle electron microscopy, chemical crosslinking-mass spectrometry and in silico modelling to generate three-dimensional models of cohesin bound to Pds5B. The HEAT-repeat protein Pds5B forms a curved structure around the nucleotide-binding domains of Smc1 and Smc3 and bridges the Smc3-Scc1 and SA1-Scc1 interfaces. These results indicate that Pds5B forms an integral part of the cohesin ring by contacting all other cohesin subunits, a property that may reflect the complex role of Pds5 proteins in controlling cohesin-DNA interactions.

OriginalspracheEnglisch
Aufsatznummer12523
Seiten (von - bis)12523
FachzeitschriftNature Communications
Jahrgang7
DOIs
PublikationsstatusVeröffentlicht - 23 Aug. 2016
Extern publiziertJa

Forschungsfelder

  • Chemical Crosslinking
  • Mass spectrometry
  • Structural Proteomics
  • Cell Division

IMC Forschungsschwerpunkte

  • Medical biotechnology

ÖFOS 2012 - Österreichischen Systematik der Wissenschaftszweige

  • 106037 Proteomik
  • 106041 Strukturbiologie
  • 106044 Systembiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Topology and structure of an engineered human cohesin complex bound to Pds5B“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren