Using Synthetic Data for Improving Robustness and Resilience in ML-Based Smart Services

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We set to answer the question of whether robustness and resilience of machine learning (ML) based smart services in the Internet-of-Things (IoT) context can be improved by using synthetic data. These data can be in the form of training data for ML algorithms or service interactions. While there is plenty of research on the use of synthetic data in general ML models, there is a lack of understanding on the use of synthetic data in the smart service context. This can help make smart services more resilient by solving the cold-start problem and improve their generalization capabilities. We propose an architecture for ML-based smart services that integrates both real and synthetic data and perform an empirical evaluation than combines publicly available sensor data (streamflow data) and state-of-the-art synthetic data generation methods. Using standard performance metrics, our results show that enhancing a dataset with synthetic data can improve performance significantly even with a modest amount of data.

OriginalspracheEnglisch
TitelProgress in IS
Herausgeber (Verlag)Springer International Publishing AG
Seiten3-13
Seitenumfang11
ISBN (elektronisch)978-3-031-60313-6
ISBN (Print)978-3-031-60312-9
DOIs
PublikationsstatusVeröffentlicht - 31 Juli 2024
VeranstaltungSmart Services Summit - Zürich, Schweiz
Dauer: 27 Okt. 2023 → …

Publikationsreihe

NameProgress in IS
BandPart F3229
ISSN (Print)2196-8705
ISSN (elektronisch)2196-8713

Konferenz

KonferenzSmart Services Summit
Land/GebietSchweiz
OrtZürich
Zeitraum27/10/23 → …

Forschungsfelder

  • Machine Learning

IMC Forschungsschwerpunkte

  • Software engineering and intelligent systems

ÖFOS 2012 - Österreichischen Systematik der Wissenschaftszweige

  • 102001 Artificial Intelligence

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Synthetic Data for Improving Robustness and Resilience in ML-Based Smart Services“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren